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Quenched n-Vector p-Spin Model 
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A disordered n-vector model with p spin interactions previously introduced is 
studied for the quenched case by means of the replica method and a generalized 
Parisi theory. We present formal solutions for general n and p and then study 
the case p ~ oo. The high-temperature solution is stable at all temperatures and 
there is only one phase transition at a temperature Tg. Only longitudinal low- 
temperature solutions are possible. There is one spin-glass solution, and it is 
stable for all T< Tg. The phase transition at Tg is of first order and displays a 
jump discontinuity in the order parameters q}L/and d. The spin-glass free energy 
is temperature dependent for n > 1 while it is constant when n = 1. 

KEY WORDS: n-vector model; random spin models; spin glass; Parisi 
theory. 

1. I N T R O D U C T I O N  

In  a p rev ious  paper ,  ~  we p resen ted  a gene ra l i za t i on  of the S tan ley  
n -vec to r  m o d e l  wi th  in f in i t e - range  p o t en t i a l  (2'3) by  i n t r o d u c i n g  G a u s s i a n  

r a n d o m  b o n d s  a n d  p spin  in te rac t ions .  The  m o d e l  is def ined by  a 
genera l ized  H a m i l t o n i a n  

- - ~  Z Jil"'ip ~ Si 1 . . . . .  Sg i, (1.1) 
l ~ < i l <  ' ' '  <ip~< N o:=1 

where  the S r = - ( S ~ ) = ( S ~  ..... $7)  are classical  n -vec tors  n o r m a l i z e d  to 
HSil] = 1, ~, fl d e n o t e  r u n n i n g  indices  for the vec tor  c o m p o n e n t s ,  i deno tes  
la t t ice  sites, a n d  S r is the  t r a n s p o s e d  vec tor  S. W e  have  chosen  the  vec tor  

n o r m a l i z a t i o n  IrS,.Ir = l in  con t r a s t  to ilSill = x / - n  in  ref. 1 in  o rde r  to 
regular ize  the l imit  p --* oe in  Sec t ion  6. T h e  c o u p l i n g  c o n s t a n t s  J i t . i ,  a re  
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independent random variables with an appropriately scaled Gaussian 
distribution so as to give rise to an intensive free energy per spin, 

[ N p-1 7 1 / 2  (Ji,...ie)2N p-l] 
P(J , l . , , ) -Lrc~ .T~-~)2  j e x p [ -  p ~ j - - ~  A, AJ-~A2  (1.2) 

AJ represents the width of the Gaussian distribution, which for simplicity 
is assumed to be centered at Jo = 0. The case of a nonzero mean can be 
treated in a canonical fashion. 

For  n > 1 and p - -  2, the model is isotropic with a continuous O(n) 
symmetry. For  p > 2, anisotropy is introduced by replacing the continuous 
O(n) symmetry with a discrete S,  symmetry. 

For  n = 1 our model represents the random Curie-Weiss model with p 
spin interactions which was introduced by Derrida. (4-8) For  p = 2 ,  the 
model becomes the random Stanley model with infinite-range interactions. 
It was first considered for n = 3 by Edwards and Anderson (9) and for n = 2 
by Kirkpatrick and Sherrington. (1~ The case of general n was first 
presented by Gabay  and Toulouse (11-17) (see ref. 18 for a recent review). 
For  n = 2 and general p we obtain the random planar rotator  model with 
p spin interactions. For  n = 3 and general p we have the random classical 
Heisenberg model with p spin interactions. All of these models have well- 
known submodels, e.g., the Sherrington-Kirkpatr ick model for n = 1 and 
p = 2 and the random energy model for n = 1 and p ~ oo. However, we do 
not recover the random spherical model for p = 2 and n ~ o% since this 
would require n -- N and hence a different limiting procedure and scaling. 

In ref. 1 we proceeded to investigate the model (1.1) for the annealed 
case. It turned out that already the annealed model displays an unexpected 
richness of solutions and subtleties regarding their stability. We presented 
complete solutions for the cases n = 2  and n = 3 .  For general n, we 
managed to derive explicit forms of the order parameter  equations and the 
free energy for the stable solutions of the model. These can be expressed in 
terms of hypergeometric functions iF~. The model is described by one 
order parameter  #1. For  all n and p there is one stable high-temperature 
phase and one stable low-temperature phase. The phase transition is of first 
order. For  n = 2, it is continuous in the order parameters for p ~< 4 and has 
a jump discontinuity in the order parameters if p > 4. For  n = 3, it has a 
jump discontinuity in the order parameters for all p. 

In this paper, we shall consider the model (1.1) for the case of 
quenched random couplings. While the case of general n and p seems to be 
quite involved, there are three limiting cases worth considering: (1 )n  = 1 
and general p, (2) general n and p = 2, and (3) general n and p ~ oo. The 
first two cases have been treated in the literature and we describe briefly 
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the main features below. In this paper, we shall consider the case of general 
n a n d p ~  oe. 

For quenched random spin systems, even mean-field theory has 
proven to be very subtle. The first infinite-range Ising spin-glass model was 
proposed by Sherrington and Kirkpatrick (SK).  (19) In 1980 Derrida (4'5) 
showed that the SK model could be generalized to models involving p spin 
interactions and that in the limit of p ~ oe they simplified to a random 
energy model, which consists of a collection of independently distributed 
random energy levels. He was then able to solve this model without 
recourse to the replica trick. Gross and M6zard (6) confirmed his results for 
the same p ~ ov model by using the replica method and Parisi's replica- 
symmetry-breaking scheme. Gardner (v) and Stariolo (8) studied the model 
for finite p. They found that for p = 2 and p = ov there are two phases, a 
high-temperature phase above a critical temperature Tc and a spin-glass 
phase below Tc. The phase transition is of second order and continuous in 
the order parameter q(x) for p = 2, but has a jump discontinuity in the 
order parameter for p = 0o. For all finite p > 2 there are three phases, (1) a 
high-temperature phase above a critical temperature Tel, (2) a spin-glass 
phase SG1 which is stable between Tc1 and a second critical temperature 
Tc2 < Tel , and (3) a spin-glass phase SG2 below To2. The phase transition 
at T~I is of second order with no latent heat, but displays a jump discon- 
tinuity in the order parameter. The phase transition at T~ 2 is of second 
order and continuous in the order parameter. Although a stability analysis 
shows that the disordered high-temperature solution is stable at all tem- 
peratures, its entropy becomes negative at some temperature T' < Tc~. This 
suggests that replica symetry is broken. By performing the first step in 
Parisi's replica-symmetry-breaking scheme, one obtains the spin-glass 
phase SGt. The nature of the spin-glass phase SG2, however, is not 
completely understood, since the full replica-symmetry-breaking scheme 
would have to be performed in this case. 

As we mentioned before, the random Stanley model with infinite-range 
interactions given by p = 2 and arbitrary n represents the second limiting 
case of our model. The replica-symmetric theory for the corresponding 
quenched problem was first presented by Gabay and Toulouse (1~) and 
later extended by Cragg et al. to include a stability analysis with respect 
to replica symmetry breaking (~2) and anisotropic interactionsJ TM The 
parameter q from Ising spin glasses which describes the overlap between 
pure states of the model generalizes to a matrix parameter (q(L), q(r) ..... q(T)) 
with the longitudinal and transverse components q(L) and q(r) being 
different in the presence of a magnetic field or some anisotropic interaction. 
In addition, a third nontrivial spin-glass parameter d (called the quadru- 
polar deformation parameter), which describes the self-correlation (3.3) of 
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a pure state of the model, has to be introduced. Just as for the Ising case, 
only the high-temperature solution is replica-symmetric, while a Parisi-type 
solution with broken replica symmetry and corresponding Parisi functions 
q(r)(X) and q(r)(x) describes the low-temperature phasesJ 14-18) In a 
magnetic field H, a replica-symmetric longitudinal solution q(r)= 0 exists 
above an instability line in H - T  space called the Gabay-Toulouse (GT) 
line. (11) The GT line replaces the de Almeida-Thouless (AT) line/2~ from 
the SK model. Below the GT line characterized by Td,  the replica-sym- 
metric solution becomes unstable and freezing of transverse components 
q(T) r 0 sets in combined with loss of time ergodicity, i.e., we have replica 
symmetry breaking. However, in a region Te~ > T> Tc2 the order para- 
meters q(L)(x) and q(r)(x) are nearly constant, i.e., replica symmetry is only 
weakly broken. Below a second line characterized by Tc2 and which has 
the same H, T dependence as the AT line, strong longitudinal symmetry 
breaking sets in. In contrast to the AT line, this second line is not an 
instability line, but rather a crossover line from weak to strong replica 

r symmetry breaking. By introducing an anisotropic interaction - DSilSi2 
into the Hamiltonian as H-~ 0, the system will settle into a longitudinal 
(q(L)r q(T)=0) or transverse (q(L)=0, q(T)r spin-glass phase 
depending on whether D > 0  or D < 0 .  For DN0,  the system can in 
addition occupy a mixed spin-glass phase (q/L)r 0, q(r)r 

As stated before, in this paper we investigate the model (1.1) for 
general n while p ~ oe. The paper is organized as follows. In Section 2 we 
derive formally the free energy and order parameter equations for arbitrary 
n and p by means of a generalized replica method. In Section 3 the connec- 
tion between our replica formalism and the overlaps and self-correlations 
of the pure states of the model is established rigorously. In particular, we 
define probability distributions P ~  and W~e which constitute the physical 
order parameters of the system and also state two intuitive distributions P 
and W which average out some of the information contained in P ~  and 
W~. Using a different language and in a slightly less rigorous fashion, this 
relationship between the space of pure states and the replica formalism for 
n > 1 has also been established independently in ref. 16. In Section 4 we 
generalize the Parisi theory to n > 1. We derive the form of matrices Qp, 
which arise in our replica formalism and we describe the geometrical 
degeneracy of the solutions. We then state the high-temperature solution 
and give a precise description of the theory of replica symmetry breaking 
for n > 1. In particular, we prove by means of the H61der inequality 
that replica symmetry for the diagonal (quadrupolar, self-correlation) 
parameters dp is always conserved. Finally, we give a formal expression for 
the free energy of our model after k steps of symmetry breaking for general 
n and p. In the case of p = 2, this overlaps largely with the generalized 
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Parisi theory presented independently in refs. 11 17. However, the exact 
proof that replica symmetry for the self-correlation (quadrupolar) 
parameters d e can never be broken and the discussion of the geometrical 
degeneracy of the solutions still represent new contributions for p = 2. In 
Section 5 we investigate replica-symmetric solutions as p -+ oo. We find that 
only longitudinal solutions are possible, and show the stability of the high- 
temperature solution. In Section 6 we derive the low-temperature solution 
as p --+ oo. The procedure for replica symmetry breaking terminates after 
the first step just as for the n =  1 model, ~6) and again, only longitudinal 
solutions are possible. We obtain an analytic expression for the spin-glass 
transition temperature Tg and show that there exists only one spin-glass 
solution and that it is stable for all T <  Tg. 

2. Q U E N C H E D  O R D E R  P A R A M E T E R  E Q U A T I O N S  

In order to perform the average over the quenched random couplings, 
we use the replica trick first introduced by Edwards and Anderson. (9) 
However, to avoid confusion with the symbol n for the dimensionality of 
the vectors S, we denote the number of replicas by r rather than by n as 
is the usual convention. That is, we obtain the quenched free energy .A by 
using the relation 

-fiA = In ZN = lira 1_ (Z~v-  1) (2.1) 
r~or 

where ZN is the partition function of the system and the bar 77 denotes the 
average over the quenched random couplings, r is the number of replicas, 
which we take initially to be an integer /> 1 and then analytically continue 
to r = 0 .  

From Eqs. (1.1) and (1.2) we have 

f 
oo 

= l-I P(4,  ...,) a],, 
- - a o  1 . < i 1 <  . . .  < i p ~ N  [ )jr 

x Tr{s,} exp ~ ~ Jil  ipS~l . . . . .  S~  "'" ip 
: ~ = 1  l ~ i l <  , . .  < i p ~ N  

= l~ P(J,, . . . ,p) dJ,, ...,~ 
oo 1 ~ < i 1 <  - - .  < i p < ~ N  

 Tr  s ,oxp(  
p 1 c ~ = l  l < ~ i i < . . . < i p < ~ N  

Ji~ , ~  PSi.--rSVp) (2.2) 



3 8 4  T a u c h e r a n d  F r a n k e l  

where the indices p, ~, and a refer to replicas. Evaluating the Gaussian 
integral in (2.2) gives 

ZN=Tr{os~ } exp b 4Np-i l<~il . . . . .  ip<~N 

= Tr{os,.} exp L ~  (N"  L L 
where we have defined 

p ot . . .  P S  

p 1 ~=1 

p , z = l  ~ , f l = l  

1 N 

q~a;p~-~ E PS~S{=O(1)  as N ~ o o  (2.4) 
i = 1  

We evaluate the trace in Eq. (2.3) by introducing a Lagrange multiplier 
matrix 2~;p~. In the limit of large N, we get 

Z N  N~oo> dq~,;,~ 2re 
~ 1 7 6  p , z = l  - - t c ~  p , v = l  

x expENG(q~;p~, ~;pz) ] (N )  (n + r)2 (2.5) 

where 

G(q~;p~, 2~/~;p~) -= - -  4 2 "~B;Pr-~B;P~ q 
~ , f l = l  p , ~ = l  a, f l = l  p , v = l  

+ In Trios} exp ~ Z~;o , PS ~ ~S ~ (2.6) 
c q f l = l  p , v = l  

Equation (2.5) can then be evaluated by the method of steepest descent, 

r N ~ o 3  Z N ) expENG*]- C (2.7) 

where C is a constant independent of N and where G* is the dominant 
saddle point of G. The quenched free energy per spin is then obtained from 
Eq. (2.1) as 

(a)  lim( 
N . . . .  0 \ N r J ,~olim---r (2.8) 

if the limit N ~  oo can be taken before the limit r ~ 0  (as is always 
assumed in the replica formalism). 

From now on,  Qp~: denotes the n x n matrix with elements q~p;p~ (p, z 
fixed). fixed) and O (k) denotes the n x n matrix with elements q~;p~ (p, x.~ p't" 
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k Similarly, Aa~ ~[-A (k)qp, ~ denotes the n x n matrix with elements 2=p;p~ (2=~;p,). 
The matrices Ap; and Qp, are defined by the saddle-point equations 

0G c3G 
- - = 0 ,  = 0  as r ~ 0  (2.9) 

Evaluating these equations yields 

p(AJ)  2 p--1 2~p;p~ 2 q~/~;o, as r --+ 0 (2.10) 

~ I r = l  I]['rS]I =1 d(ceS) pS~ "cSfl exp[-�89 E~,;=, (PS) r Ap~ ~S] 

q~e;;~ = F I ; = ,  ~lr~Sll = i d(~S) exp[-�89 E r (PS)TApv ~S] p,'c = 1 
as r--+0 

(2.11) 

We see that when p = r ,  our vector normalization IlSll = 1 and Eq. (2.11) 
lead immediately to the trace condition 

Tr Qpp = 1 (2.12) 

whereas we have no such restriction for the matrices Qp~ if p r z. For  n = 1, 
the order parameter  equations (2.10)-(2.11) reduce to the Gross and 
M6zard result. (6 s) 

3. PROBABILITY DISTRIBUTIONS Pop AND Wo~ 
FOR THE OVERLAP AND SELF-CORRELATION 
OF THE PURE STATES OF THE SYSTEM 

Parisi discovered that in the replica theory for the Ising model the 
parameters Qp~ with p ~ r (just numbers in this case) can be related physi- 
cally to order parameters which describe the overlap between two pure 
states of the model. (21'22) The overlap between two pure states t and u of 
an Ising system with a fixed configuration Y of random bonds is defined as 

1 u 
q(t, U; ~--)--N,~I= ( S i ) , y  (S,-),;~- (3.!) 

( ' ) , ; J -  represents the thermal average restricted to the pure state t, corre- 
sponding to the fixed configuration 9-. On the other hand, the parameters 
Qpp for n = 1 are simply equal to one and do not constitute variables of the 
system. 

For  n > 1, the definition (3.1) for the overlap between pure states has 
to be generalized. Furthermore,  we have to introduce a new parameter  
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which we shall call the self-correlation of a pure state. We shall prove that 
the generalized overlap parameter can be related to the matrices Qp~ 
(p ~ v), while the new parameter for self-correlation of the pure states can 
be related to the matrices Qpp in our replica formalism. For n > 1, these 
matrices Qpp are not completely determined by the normalization condition 
Tr  Qpp = 1 and therefore do constitute variables for the system. 

The expression (3.1) is generalized to n > 1 by defining the following 
overlap between the vector components ~ in the pure state t and the vector 
components fl in the pure state u, for an n-vector system with a fixed 
configuration Y- of random bonds: 

q~(t, u; J - ) - ~  ( S ~ )  ,; ~- ( S ~ )  ~; 3- (3.2) 
i = 1  

The self-correlation of a pure state, on the other hand, is defined by means 
of the correlation function for the vector components at one site 
( > j as 

1 
( $7S~),; J (3.3) d~(t; J ) - N , = I  

It is also possible to give definitions for overlap and self-correlation which, 
though intuitive, average out some of the information about the pure states 
contained in the general definitions (3.2) and (3.3): 

( S , ) , ; j -  ( S ~ ) u j  = q~(t, u; J-) (3.4) q( t, u; ~--) =- ~ ~" v 
i = 1  ~ = 1  

1 N 
d(t; J ) = - ~  Y' ( s r s i ) , s  = 1 (3.5) 

i = 1  

Both sets of definitions, (3.2)-(3.3) and (3.4) (3.5), reduce to the definition 
(3.1) for n =  1. The second set of definitions requires only a parameter for 
overlap since the self-correlation parameter (3.5) is fixed by our normaliza- 
tion condition for n-vectors. We shall see below that q~  and d~  are 
related, respectively, to the matrices Qp~ (p ~z) and Qpp of the replica 
formalism. On the other hand q and d, are related to Tr Qp~ (p r  and 
Tr  Qpp, respectively. 

Since the pure states of a spin glass are not related by any apparent 
symmetry, they cannot be extracted by means of an external magnetic field. 
A magnetic field which prepares a pure state would have to be site depen- 
dent and follow the local spontaneous magnetizations. We have to know 
these local spontaneous magnetizations before we can define such a field. 
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However, it is possible to obtain a description of the space of pure states 
by means of the probability distributions (3.8)-(3.11) for the overlaps 
q=~, q and self-correlations d~,  d. These probability distributions can be 
expressed in terms of the matrices Qp~ from our replica formalism without 
recourse to an external field since it is possible to characterize pure states 
by the vanishing of the connected correlation functions (clustering), ~23"24) 

($71~...S,~,'),;9- - (Si~ 1 ) ,.9-... (Si]'),, J- = 0 (3.6) 

�9 . ( s i l a i l ) t ; j -  Si, Si , ) ,  S ) , ; j -  = 0  (3.7) 

By following Parisi (2~'22~ and De Dominicis and Young, (2s) we establish the 
relation between the distributions (3.8)-(3.11) and our replica formalism. 

We now merely define the distributions and state the results. For a 
fixed configuration of random bonds Y,  the probability distributions for 
the overlaps q~a, q and the self-correlations d~, d defined in Eqs. (3.2)-(3.5) 
are given by 

K 

P=e;3-(q=e) = ~ P.9-P~;9 - 6[q=~-q=~(t, u; Y ) ]  

"~=~ (3.8) 
K 

W~;9-(d~) = ~ Pt;y 6[d=~-d~( t ;  ~-)-[ 
t = l  

and 

K 

P ~ ( q ) =  ~ P , ; f P . ; ~ a [ q - q ( t , u ; J - ) ]  
t , u =  1 

K 

W s ( d  )= ~ P , ; f  3 ( d -  1 ) = b ( d -  1) 
t = l  

(3.9) 

The averages of these distributions over the random couplings become 

P~(q~a) =- P=,~;y (q~a) 

W~a(d~a) - W=p;~- (d~) 
(3.10) 

and 

P(q) =_ Pj-(q) 

W(d) =- Ws~ (d) = 6 ( d -  1 ) 
(3.11) 

Even in the case of the nonrandom n-vector model (where these prob- 
ability distributions can be defined in an analogous fashion), P~ ,  W=~, and 
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P are nontrivial if n > 1. For  p = 2, they can be expressed analytically and 
for general n in terms of hypergeometric functions 2F1, or alternatively, 
associated Legendre functions of the second kind Q~.(27) We shall see in the 
next section that the distributions P ~ ,  W~,  and P for the nonrandom 
model describe the geometrical degeneracy of the matrices Qpo and of the 
longitudinal part of the matrices Qp~ (p ~ r) for our quenched system. 

As mentioned before, the probability distributions (3.10)-(3.11) can 
now be expressed in terms of the parameters q~/~;p~ from the replica 
formalism in Section 2. In ref. 26 we show that 

1 
P~(q~) = lim ~ 6(q,a- q~;p~) 

~ o r ( r - 1 ) p  

W~p(d~)---lim I ~ ~(d~_q~;pp ) 
r ~ O  ?" p = l  

(3.12) 

and 

1 
P(q) = lira ~ 6(q- Tr Qp~) 

~-~o r ( r -  1) p~ 
(3.13) 

1_ 
W(d) = lira ~ 6(d- Tr Op;) = 6(d- 1) 

r ~ O  r p - 1  

The replica formalism in the previous section indicates that a complete 
description of our model is only possible if we take the full set of 
parameters q~e;p~ into consideration. This eliminates the description (3.13), 
and the probability distributions P~p(q~e) and W=e(d~/~) for the overlaps 
and self-correlations of the pure states of the system become the physical 
order parameters. However, it is still possible to give a "mean-field 
description" of our mean-field model by using the functions (3.13). 

4. G E N E R A L I Z I N G  T H E  PARISI  T H E O R Y  TO n > l  

For n = 1, the replica formalism generates an order parameter matrix 
.~ = (Qp~), where each Qo~ is a number. For  n > 1, the replica formalism 
generates an order parameter matrix ~ = (q~;p~), i.e., an order parameter 
matrix ~ = (Qp~), where each element Qp~ is now an n x n matrix. This 
introduces two new features to the problem. 

First, the diagonal elements Qpp, which did not constitute variables of 
the problem for n = 1, become variables when n > 1, since the trace condi- 
tion Tr Qpp = 1 no longer fixes Qpp. While the procedure for replica sym- 
metry breaking generalizes in a straightforward manner to n > 1 as far as 
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the off-diagonal matrices Qp~ (p r z) are concerned, it is not a priori clear 
if and how replica symmetry should be broken with respect to the 
on-diagonal matrices Qop" In particular, the concept of ultrametricity loses 
its meaning. In fact, we shall prove rigorously that if replica symmetry for 
the off-diagonal matrices Qo~ (P ~ ~) is broken according to a generalized 
Parisi scheme, then the matrices Qop along the diagonal must be replica- 
symmetric. 

The second problem is what form the matrices Qp~ should have and 
how their form should change as replica symmetry is broken. It is useful at 
this point to introduce the notion of component symmetry. We shall say 
that an off-diagonal matrix Qp~ (p ~ ~) is component-symmetric if all its 
elements are identical, and we shall say that an on-diagonal matrix Qop is 
component-symmetric if, respectively, all its diagonal elements are identical 
and all its off-diagonal elements are identical. Formally, 

q ~ ; p p  = qpp Vc~ =/= fl 

1 

n 

(4.1) 

In the case of only one pure state for the system, we shall see below that 
we must have both component symmetry and replica symmetry. Both 
replica and component symmetry are thus a requirement for any high- 
temperature solution. At low temperatures, both component and replica 
symmetry must be broken. The way in which component symmetry is 
broken is uniquely determined apart from a geometrical degeneracy which 
is independent of the bonds and which corresponds to the time-reversal 
symmetry of the n = 1 model. 

4.1. Form of the Matrices QpT 

From Eq.(2.6) we see that for p = 2  the expression G remains 
unchanged if we multiply each matrix Qp~ from the left with an orthonor- 
mal matrix O o and from the right with an orthonormal matrix Or. This is 
because the Euclidean matrix norm is invariant if a matrix is multiplied by 
an orthonormal matrix and because of the symmetry of the integral. Thus, 
the solutions Qp~ will have a degeneracy 

Q p~: T = OpQp, o~ (p = 2) (4.2) 

where Qp, denotes some standard form of the matrix Qp,. For p > 2, we see 
from Eq. (2.6) that the solutions Qp~ can only have a restricted degeneracy 
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compared to p = 2, with the orthonormal matrices Op being replaced by 
permutation matrices Pp: 

Qp~ T = PpQp~P~ (p > 2) (4.3) 

The n! matrices Pp are defined to permute the components of a vector 
upon multiplication by them. 

The degeneracies (4.2) and (4.3) of our solutions Qp~ arise from the 
symmetry of the Hamiltonian (1.1) and are the analogue of the time- 
reversal symmetry we find for the n = 1 model. The explicit form of the Qp, 
is then derived as follows. 

4.1.1. Qpp. If we consider the spectral decomposition of a 2 x 2  
matrix, we see that the most general 2 x 2 matrix Qoo which is symmetric 
and has a fixed trace Tr Qop = 1 can be written in the following form: 

Qpp=n l(1-dp)I+dp.C,(~)r (4.4) 

where n = 2, I is the unit matrix, ~ is some unit vector, and dp is an order 
parameter. This equation will only produce the required degeneracy (4.2) 
for p = 2 when ~ is arbitrary. The arbitrary unit vectors ~ correspond physi- 
cally to the arbitrary orientations of the magnetic field and are replaced by 
the Cartesian unit basis vectors ~ when p > 2. Since the magnetic field and 
the unit basis vectors play the same physical role for n > 2 as they do for 
n = 2, we find that the most general form of the matrices Qpp must be 
given by 

Qpp=n '(1-dp)I+do.~ r ( p = 2 )  
(4.5) 

Qpp=n l(1-dp)I+dp.&s(p)(~/(p)) r ( p > 2 )  

where the Pg represent arbitrary unit vectors and where the function f(p) 
maps replica indices onto coordinate numbers ~. If we extract the 
degeneracies (4.2) and (4.3) from the expressions (4.5), we see that the 
matrix ~pp is of the form 

~po= n 1 diag[1 + ( n -  1) dp, I-d;,..., 1 - d p ]  (4.6) 

This matrix could also have been obtained by making an ansatz for the 
maximum anisotropy we expect for the eigenvalue spectrum in an n-vector 
system, i.e., a nondegenerate (longitudinal) eigenvalue and a (transverse) 
eigenvalue with ( n -  1 )-fold degeneracy. We shall call dp the self-correlation 
parameter, since it determines the probability distribution (4.12) for the 
self-correlation of the pure states of the system. It is also called the 
quadrupolar deformation parameter in the literature, m 17) 
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4.1.2. OpT (p~:T) .  We expect the same maximum anisotropy for 
the eigenvalue spectrum of 0p~ when p ~ T. Thus, 

pr  ~ F/ 1 r ~ (L)  n ( T )  (T)  diagLqo~, ~o ...... qp~ ] (P r z) (4.7) 

a(T) where a (L)_~p~ denotes the nondegenerate (longitudinal) eigenvalue and ~p, 
the (transverse) eigenvalue with (n-1) - fo ld  degeneracy. 

It is interesting to note that for q(L)= m 2, q(r)_= O, and n - l ( 1 -  dp)- 
1/(2J) when p = 2 ,  and q(pL)=_q2, q(S)~O, n-~(~do)=__l/(pjq;-2)when 
p > 2 ,  Eqs. (4.6) and (4.7) combined with the degeneracy (4.2)-(4.3) 
represent the matrices describing the overlaps and self-correlations for the 
pure states of the nonrandom n-vector model. (27~ This confirms that the 
degeneracy in the matrices Qp~ is just a geometrical effect of our spin model 
which is independent of the bonds and any randomness. This "geometrical 
degeneracy" corresponds exactly to the time-reversal symmetry of the n = 1 
model, which is also independent of bonds and randomness. 

4.2. The Geometrical Degeneracy of 
Broken Component Symmetry 

Because of the degeneracy (4.2) and (4.3), it suffices to consider the 
solution matrix ~- - (0pT)- (q~;p~)  with OpT given in Eqs. (4.6) and (4.7). 
The most general matrix ~=(Qp~) is then obtained by means of a 
similarity transformation 

= TrOT (4.8) 

where T is of block diagonal form, 

T -  = blockdiag(T1 ..... Tk) 

Op ( p = 2 )  (4.9) 
Tp= Pp ( p > 2 )  

and the matrices Tp are arbitrary orthonormal n x n matrices for p = 2 and 
arbitrary n x n permutation matrices for p > 2. 

As we mentioned above, the geometrical degeneracy of the solutions 
expressed in Eq. (4.8) corresponds to the time-reversal symmetry for the 
n = 1 model. The latter is incorporated into the formalism for n = 1 if we 
include a field h = + 1 into the probability distribution P for the overlap of 
pure states 

1 
P(q) = lim ~ ~ ~(q - hQp,) r~or(r-1)h=+_l p~ (4.10) 

822/71/3-4-3 
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The field h simply makes P(q) symmetrical about the ordinate, P(q)= 
P( -q) .  

In the same fashion, the geometrical degeneracy (4.8) is incorporated 
into the probability distributions P ~  and W~ for the overlap of pure states 
when n > l: 

1 
= ~ TRQp~Tr Ifl)) P~p(q~) ! imor( r_ l  ) ~ 6 ( q ~ - ( ~ [  T~ 

(T) p 

W=~(d~,~) l i m l ~  ~ 6(d~ (~1 T-- = - - TRQRoTp Ifl)) 
r---~O r {T)  p - - 1  

(4.11) 

where for notational reasons we have temporarily written the element M~a 
of a matrix M as (c~[ M [fl) and where ~2(T) denotes the sum over all 
possible configurations of the matrix T. 

This geometrical degeneracy of P~a and W~ is nontrivial when p = 2. 
As we mentioned before, for a(L)=m 2, a(r)-=O, and n ~ (1 -dp ) -1 / (2 J )  ~ p z  -~ pz 

the matrices Qp~ describe the overlaps and self-correlations for the pure 
states of the nonrandom n-vector model. (27) That is, W~ and P ~  for the 
nonrandom model describe precisely the geometrical degeneracy for the 
quenched matrices Qpp and the longitudinal part of Qo~, respectively. In 
ref. 27 we have shown that the nonrandom W~ and P ~  can be expressed 
in terms of hypergeometric functions 2F~, or, alternatively, associated 
Legendre functions of the second kind Q~. 

Since the geometrical degeneracy is simply superimposed on our 
standard solutions ~ = (Qp~) ~ (c~;p~) from Eqs. (4.6)-(4.7), we shall only 
be concerned with solutions of this form and the corresponding (unsym- 
metrized) probability distributions 

( l im 1 ~ 5 ( q ~ -  .(i.)~ ~z=fl= 1 ~/pz ! 
/ r ~ 0 r ( r l l ) p ~  

p ~ ( q ~ )  = 1!imo ~-~-- 1) p ~  6(q~-q(p~ )) a = f l >  1 

( (5(q~) else 

. 1 r ( 1 + (n-- 1)dR) a = f l = l  

W ~ ( d ~ ) =  6 d~ - - a 

k,~(d~) ~ ~ fl 

(4.12) 
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4.3. High-Temperature Solution: 
Replica and Component Symmetry 

At high temperatures, we expect only one pure state. Because of 
the degeneracy (4.8) and Eq. (4.11), this is only possible if we have both 
replica and component symmetry. With 0 denoting the zero matrix, the 
only possible high-temperature solution is therefore 

Qp~-=O Vp~z 
1 (4.13) 

Qpp = -  I 
n 

4.4. Low-Temperature Solutions: 
Breaking the Replica and Component Symmetry. 
Longitudinal, Transverse, and Mixed Solutions 

From Eqs. (4.6)-(4.8) we see that component symmetry is broken 
whenever we have one a(L'T):~O or one dpr The way in which it is -1 p ' r  

broken is completely determined by Eqs. (4.6)-(4.7) as soon as we choose 
the three order parameters ~(L) a(r) and dp (modulo the geometrical r  , --~pz , 

degeneracy described above). This allows for longitudinal (q2  = 0), trans- 
verse (q(pL)= 0), or mixed ,~p~('~(L), a(r)r p~ 0) low-temperature solutions. On the 
other hand, replica symmetry is broken if any of the parameters a (L'T) and -1 p,c 

dp varies between replicas. 
When replica symmetry is maintained, Eqs. (4.6)-(4.7) allow for 

low-temperature solutions of the form 

~p~ = diagEq(L/, q(r) ..... q(r)] (p ~ z) 
(4.14) 

O_.pp = n - 1  diag[1 + ( n -  1)d, 1 - d,..., 1 - d ]  

However, we expect this solution to be unstable for n > 1, just as it is for 
n = 1. The fact that for n > 1 we have the far more extensive geometrical 
degeneracy of pure states described before replacing the time-reversal 
degeneracy of the n =  1 model is not sufficient. We still require the 
additional degeneracy of the pure states brought abont by the random 
configurations of bonds. This degeneracy can only be generated by 
breaking the replica symmetry. 

But how should the replica symmetry be broken? The Parisi recipe for 
n =  1 (28,22,24) generalizes immediately to the order parameters a (L) a (r) 
which can simply be treated (as pairs) like the corresponding single 
p a r a m e t e r s  qp,: for the n = 1 model. However, as a scheme for breaking the 
symmetry of a two-dimensional array of parameters qp~, Parisi's scheme 
does not tell us anything about how the symmetry in the one-dimensional 
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array of parameters dp should be broken. In particular, the concept of 
ultrametricity loses its meaning. 

One of the fundamental features of the Parisi scheme is that the maxi- 
mum overlap of a replica p with another replica is the same for all replicas. 
Therefore, it stands to reason that the self-correlation should be the 
same for all replicas. In other words, replica symmetry for the diagonal 
parameters dp should not be broken, even at low temperatures. 

This rather intuitive argument can also be made rigorous. In ref. 26 
we show by means of the H61der inequality that if symmetry for the off- 
diagonal parameters a (L'T) is broken by following the Parisi procedure, 
then the self-correlation parameters d o must be replica-symmetric in order 
to find the dominant saddle point for G in Eq. (2.6). 

Consequently, we can adopt the following recipe for finding the low- 
temperature solution of the matrix ~ = (Qo~): 

1. Replica symmetry for the off-diagonal (overlap) parameters a (L'T) -1 p z  

is broken according to the Parisi scheme for n = 1 by simply performing all 
symmetry-breaking steps on pairs of parameters ~(L) ~(r) rather than on a 
single parameter qp~. In a more formal fashion, after k steps of symmetry 
breaking, we obtain a sequence of subdivisions of the set of replicas into 
cluster sizes 

r=_mo>~rnl>~m2>~... >~mk>~mk+l~l (4.15) 

and associated with it a hierarchy of overlap parameters given by 

/ ( P )  = / (m~) I (m---~+ ~ ) P  (mi___~)r qp~(L, r) -- qi~ (/'' r) if and r I 

(p-Cz; i = 0 ,  1, 2 ..... r) (4.16) 

0~<q(oL)~<q~L)~ ...q~L)< 1 

O~q(or)~q~r)~ . . .q~r)~l  

where I(x) is the smallest integer greater than or equal to x. 

2. Replica symmetry for the diagonal (self-correlation) parameters dp 
is conserved, i.e., dp= d for all p. 

The actual matrices Qp~ are then determined from the order 
parameters a (L'r) and d according to Eqs. (4.6)-(4.7). -1 p z  

Eventually, just as for the n = 1 model, the procedure of breaking the 
replica symmetry is carried out an infinite number of times and the free 
energy a/kT, which was originally a discrete function of the parameters 
ql L'T), mi, and d, becomes a functional of Parisi-type functions q(L'T)(X) 
and a parameter d. And the problem of maximizing a/kT with respect to 
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the a (r'v) ~i , mi, and d has been reduced to the variational problem of 
maximizing a/kT with respect to q(L'r)(x) and d. 

In this paper, however, we shall restrict ourselves to breaking the 
replica symmetry in the limit p ~ ~ ,  which allows the symmetry-breaking 
procedure to terminate after a finite number of steps. 

The derivation of the free energy (2.8) after k steps of symmetry 
breaking is given in ref. 26. Since it involves a considerable amount of 
algebra, we merely state the result here, which in the limit r ~ 0 and by 
setting dp = d becomes 

t~(r)(d) ~ w(=)(d) { (AJ) 2 } 
2 I- 2 p ( ~ ) ( d ) - - T  [w(~)(d)]P-~ 

Dxo In Dx ~ 

x . . .  Dxk IF(n, k, ;(~) N)] mk/rnk+l - ~  .~j , d, . . . .  (4.17) 

Here, we have used the conventions 

too-=0, ;(V'=-0, ;;'-- - - 

Dxj dxj ~r~j/2 (4.18) (2/c)./2 e J 

and we have defined the functions 

w(L~(d) =-- , w(r)(d) - (4.19) 
n 

and 
Fin, k, 2~ ~), d, xj] 

+Y ~ 1 (L)_ 2 
j=O 

[(n-3)/2r I[Y~,5=o(~) T ) -  ;)~!,)l/2Xjl]n_ 1 (1 --  y2 ) , / 2 ]  
X ~1 IIEk=0(/~j(.T) __ ;.j(.T)I)I/2 XjHn_ 1 (1 --  f12)1/2](n--3)/2 (4 .20)  
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with Ilal[._ 1--- [Z~=2(a~) 2] 1/2 and I~ denoting modified Bessel functions of 
order v. 

Finally, the order parameter equations (2.10) become 

2r 2 [q~L , r ) ]p  , 
2 

(4.21) 
#(L, r)(d ) = P(AJ) 2 [w(L, r)(d)]p-~ 

2 

5. R E P L I C A - S Y M M E T R I C  S O L U T I O N S  AS p-~  oo 

5.1. Rep l ica -Symmetr ic  Free Energy and 
Order  Parameter  Equations for  General  p 

By setting k = 0, ml = 1, q(o L ' T ) =  - q (L ,T) ,  and )~(o L r ) =  )jL.r) in Eq. (4.17), 
we obtain the replica-symmetric free energy per spin 

k-T = _ 1 n 2 ~ ( , - 1 ) / 2 + _ ~ _ _  ~ - -~  ) j~ )__  [ q ( ~ ) ] p - 1  
~=l 2 2 

+ ~ w(~)  __(AJ) 2[w(~)]p-1} 
~=1 2 t~ 2 

oo Dx fo  DRln fl -- f dyOo(X, y, R) (5.1) 
(x) - - 1  

where 

and 

Qo(X, y, R)-= (1 - y2)(n-3)/2 exp 1 2  [/~(L) # (V)  )/L) + 2(T)] 

yx(A(L))l/2] I(__2- 3)/2[ R()Jr))l/_~2 (1--_y2)'/2_.__]] + 
J [1R(2(T))I/2 (1 -- y2)V2](.- 3)/2 (5.2) 

e-n2/2Rn 2 
/ )R = F ( ( n -  1)/2) 2 (" -3)/2 dR (5.3) 

Variation of the free energy (5.1) with respect to q(L,r) and p(L,r) simply 
recovers the order parameter equations (4.21) for the replica-symmetric 
case 

.) (L,T) = P(AJ) 2 [q(L,T)]p- 1 
2 

(5.4) 
p(AJ) 2 

/l(L' r)(d) = 2 [w(L,r)(d)]p 1 
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Differentiating the flee energy (5.1) with respect to /z (L) gives the order 
parameter equation for the diagonal (quadrupolar) parameter d, 

l + ( n - 1 ) d  f~  DXfo~ 
n - ~ ~1_ 1 dyQo(X, y, R) (5.5) 

The variation with respect to/~(r) yields nothing new. This is a manifesta- 
tion of the trace condition TrQpp= 1, which translates into #(r)+ 
(n--1) #(r)= 1. Differentiating a/kT with respect to 2 (c) gives the order 
parameter equation for the longitudinal parameter q(r), 

q(L'=f~DxfobRrYl-lJYYO~ ~ (5.6) 
- L ~1-1 dyoo(X, Y, R) J 

Finally, the variation of a/kT with regard to 2 (r) produces the order 
parameter equation for the transverse parameter q(T~, 

1-q(V)=f~ DX l o b R  ~I-Idy g(y'R) O~ y'R) 
~1 1 dy Oo(X, y, R) 

y2 g( y, R) - -~ + I(n_ 1)/2E R(  flt,(T)) 1/2 (1 - -  y2)1/2]  R(1  - -  y2)1/2 

l(n_ 3)/2[ R( )v'T)) 1/2 -~ Z ~ -2( ZT)---~ 

(5.7) 

where we have used the relation 

0 Iv(z) L+I 
(5.8) 

~ Z  Z ~ Z v 

for modified Bessel functions. (29) Equations (5.5)-(5.7) represent the 
general order parameter equations (2.11) for the replica-symmetric case. 

5.2. Replica-Symmetric Free Energy and 
Order Parameter Equations as p - ~  o o  

In the limit p ~ 0% the order parameter equations (5.4) can only be 
satisfied if 2(~)~0 (for q(~)<l) or if 2(~),-~oe (for q(~)=l). With the 
relation (29) 

(z/Z) v 
Iv(z) for small z (5.9) 

r(v+ l) 

the order parameter equation (5.7) for q(r) yields 

q(r)=o (5.10) 
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when 2(r)~ 0. On the other hand, with the relation 

Iv+l(z) 1 for large z (5.11) 
Iv(z) 

Eq. (5.7) cannot be satisfied when q(V)= 1, 2(r)~ ~ .  This means that the 
system can only occupy a longitudinal state q~r) = 0 for large p. 

In case of q(T) = 0, Eqs. (5.5)-(5.7) reduce to 

r51-'-dY YaD'(x' Y--)q 2 (5.12) 
Dx [ 5~ * ayo~oL)(x, y) j 

and 

l + ( n - 1 ) d _ f ~  DxS~ldyy20~)(x ,y )  (5.13) 

where 

O(oL)(x,y)=--(1--y2)(n-a'/Zexp{Y-~2 [#(L)--#(T)--,~(L)]+yx(,~(L))I/2} (5.14) 

Combined with the result that we can only have a longitudinal solu- 
tion q(T)= O, Eqs. (5.4) (for q(T)= 0) and (5.12)-(5.13) represent the order 
parameter equations of our model when p is large. The corresponding free 
energy from Eq, (5.1) becomes 

~-~ = - l n v ( ( n _ l ) / 2 )  2 ~3L)-- 2 [q(L)]p 1 _ - -  

W (~) ( (A J) 2 } 
-~- ~-~ T t  ~(cz) - 2 ~W(~)~P- 1 

- f Dx In dy O(oL)(x, y) 
- - o 0  - - 1  

#(T) 

2 

(5.15) 

5.3. H i g h - T e m p e r a t u r e  So lu t ion  and 
Transi t ions  to L o w - T e m p e r a t u r e  Phases as p - ,  oo 

The simplest possible solution of Eqs. (5.4) and (5.12)-(5.13) is 

q (L)=d=0 (5.16) 

This represents the high-temperature solution (4.13). The (unsymmetrized) 
probability distributions (4.12) for the overlaps and self-correlations of the 
pure states of the system are obtained immediately as 

P~(q~) = 3(q~) 

~6(d~a - 1/n) ~ = fl (5.17) 
W~a(d~a) = (6(d~) ~ ~ fl 
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in agreement with the fact that we have only one pure state. The 
corresponding free energy from Eq. (5.15) becomes 

~-~ - 4nP_ 1 In F--'~-) (5.18) 

We note that this high-temperature free energy holds for arbitrary p 
as well. The additive constant term is a result of our spin density dS 
and could be made to vanish by simply choosing the spin density 
dS/E2rcn/z/F(n/2)] instead. It is of no physical relevance since it leaves the 
thermodynamics of the system unchanged. The choice of spin density 
expresses how many states we count on the unit sphere. In particular, this 
means that the temperature where the corresponding high-temperature 
entropy per spin 

(A J) 2 27Z n/2 
= 4n p-  ~kT2 t- k In F(n/2~) (5.19) 

becomes negative is not a critical temperature for the system as it is for 
n = 1. The AJ was defined in Eq. (1.2). 

At low temperatures, at least one of the parameters d or q(L) must be 
greater than zero. By expanding the right-hand side of Eq. (5.12) for small 
values of d and q(L), we find 

q(L~ P(AJ) 2 
2n 2 [-q(L)]p l +O{[q(L)]p-1 d) +O{[q(L)] 2(p-1)} (5.20) 

For p > 2, this equation for small values of q(L) cannot be satisfied. Thus, 
the order parameter q(L) for large values of p must display a jump discon- 
tinuity at a certain transition temperature T u from the high-temperature 
phase with q(L)=0 to a low-temperature state with q(L)>~e>O. The 
temperature Tq has to be obtained numerically from Eq. (5.12) when p > 2. 

We note that for p = 2  Eq. (5.20) yields the phase transition point 
AJq =n in agreement with refs. 9-17 (if we take the spin normalization 
JISIF = x//n into account). Since (5.12) corresponds to a longitudinal solu- 
tion, this shows that AJq is independent of the particular low-temperature 
ansatz, as one might expect from the argument that AJq corresponds to the 
temperature where "off-diagonal" fluctuations of the most general matrix ~. 
away from the high-temperature solution are allowed. 

Expanding the right-hand side of Eq. (5.13) for small values of d and 
q(L), on the other hand, gives 

d -  p(p - 1 )(A J) 2 
2nP_l(n+2) d+O(dZ)+O{d[q(L;]P-~}+O{[q(L)]  2(p-1)} (5.21) 
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This yields the transition point AJa from the high-temperature phase with 
d =  0 to a low-temperature state with d > 0 :  

[2nP-  l_(n + 2)~ 1/2 
aJa=L P(P-~)  ~ 

(5.22) 

For large p, this means that a continuous transition to a spin-glass state 
with d > 0 is only possible as T ~ 0. For all finite spin-glass transition tem- 
peratures Tg and for large p we must therefore have a jump discontinuity 
in the self-correlation (quadrupolar) parameter d as well. This will be 
confirmed by our findings in Section 6. 

Since we do not expect any replica-symmetric low-temperature 
solution to be physical for the reasons listed in Section 4, we shall not dwell 
on their investigation here, but rather proceed to breaking the replica 
symmetry in the next section. We conclude by proving the stability of the 
high-temperature solution. 

5.4. S tab i l i ty  of  the  H i g h - T e m p e r a t u r e  
So lu t ion  as p - ~  m 

The free energy a/kT given by Eqs. (2.6) and (2.8) will be stable with 
respect to fluctuations of the general solution matrix ~ = (q~B;p~) about its 
equilibrium configuration if the Hessian of a/kT with respect to q~,p~ is 
positive-definite. The auxiliary parameters 2~;p~ have to be expressed in 
this connection in terms of the physical parameters q~;p~ by means of 
Eq. (2.10). Because of the geometrical degeneracy described in Section 4, it 
suffices to consider fluctuations of the standard matrix ~-= (Qp,) with 
diagonal n x n matrices ~)p~ given by Eqs. (4.6)-(4.7). For large p, it then 
suffices further to restrict fluctuations to the longitudinal ansatz 

Qpz = n  - l  d iag[q~ ), 0,..., 0] 

~)pp = n  -1 diag[1 + (n - 1) dp, 

(p ~ ~) 

1 - d .  ..... 1 - d p ]  
(5.23) 

After inserting this longitudinal ansatz combined with the relation (2.10) 
into Eq. (2.6), the stationarity of the free energy (2.8) depends only on fluc- 
tuations qp~ of the off-diagonal parameters a (L) and on fluctuations t o of - ,  p z  

the diagonal parameters d o . Thus, the situation is completely analogous to 
the stability analysis performed by de Almeida and Thouless (2~ for the 
Sherrington-Kirkpatrick model. 

In ref. 26 we have shown by means of the H61der inequality that the 
free energy can only be stationary if all the diagonal parameters d o are 
equal to some d. Since at high temperatures d is uniquely determined 
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( d =  0), the high-temperature solution will then be stable with respect to 
arbitrary fluctuations ep of alp. 

It remains to be shown that the solution is stable with regard to fluc- 
tuations of the off-diagonal parameters #c)  i,e., with respect to fluctuations "/pr 
which lead to replica symmetry breaking. By following ref. 20, one shows 
that the eigenvalue of the Hessian of the free energy (2.8) corresponding to 
these fluctuations is given by 

~2 G 02G 02G 
EV =- c~2~) a)4~ , + 2 O).~L) ~32~L) 02~L3 a , ~  (L) (5.24) 

where p # T r  G is defined in (2.6), and we have expressed all 
parameters qp,"(L) in terms of zp," (L) by means of Eq. (2.10). EV is independent 
of the particular realization of the replica indices because of the symmetry 
of the system. In order to evaluate EV for the replica-symmetric solution 
q(L) _ a(L) p~--~  , we require the following expectation values for the spin 
components: 

= _ DXLiL, dyoS ) j 

( pal ca 1 PS 1 zSI ) : foo 
co 

<pslzSlpSlaSl>=fmoo_ 

<,sl s ' ~  

[I '  ,_ay y2e(oL ] 2 
DX L ~1 dy O(o L) 3 

dy Y2  o '.IFII- -aY Y  oL'I (5.25) 
DXL SL, dyO(o L) JL 511dyO~oL) J 

Dx [ S l  l dy yo>],  
f11  dy a (L) J 

For p > 2, the first term on the left diverges for the high-temperature solu- 
tion q(e)= 0, while the integral is always finite. Thus, the high-temperature 
solution for large p is stable at all temperatures. This is analogous to the 
result for the n = 1 model found by Gardner. ~7) 

Of course, for finite (not too large) p > 2 we should have to investigate 
the stability of the high-temperature solution with regard to formation of 
transverse or mixed spin glasses as well. This is why Eq. (5.26) can only 

1 (L) 2 2 
q(L, oo fILl_dy___y20(0 L) [ I i - l d y  yo~-] ~ > 0  (5.26) 

( p - - l ) 2  (c' f-ooDx t fl_,dyo(oL, Lf_,dyoo~ (L, 3 J 

where 0~o L) has been defined in (5.14). From Eqs. (2.6), (5.24), and (5.25), 
the stability condition EV>O for our replica-symmetric (longitudinal) 
solution then becomes 
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represent the stability condition for large p. However, we believe that the 
same divergent term will make the high-temperature solution stable for 
finite (not too large)p > 2 as well. 

6. BREAKING REPLICA S Y M M E T R Y  AS p -~  oo 

6.1. Solut ion 

Let us consider the first step of symmetry breaking. By setting k--  1, 
ml = m, and m 2 = 1 in Eq. (4.17) we obtain the free energy 

- ( l - m )  ~ ~ -  21 ~)-  [q~)]p-1 

- - 5 - - - +  ~(~(d) - [w(~(d)]~ 1 

with 

;' 
F -  1 

----  Dx 0 In Dxl F ~ (6.1) 
m -oo -oo 

dy (1-- y2)(n-- 3)/2 exp {Y--~E [l~(L)-- #(r)-- ~]L) + )~] T)] 

+ y E X I ( ~ ( L ) )  1/2 .-~ X I ( . ~  L) - -  ,~ (OL)) 1/2 ] } 

I<n_ 3)/;[ IFxo(~(oT)) in + Xl(~ T)-  2(0T))1/2tl,- 1 (1 -- y2)1/2] 
x [1 ilXo(A(or))m + xl(A~r)_ 2 (or) )1/211 n_l (1 - y2)1/23 (.-3)/2 (6.2) 

In the limit p--* 0% the order parameter equations (4.21) can only be 
satisfied if a! ~)< 1 and (~)~ " (~) (~) assume _,j 2~ r ) ~ 2 )  0 o r a f q )  =1  and 2) ~ ~ .  Let us 
that 2(oT)~ 0 and ~ .  By using the relation (29) 

L(z) ~eZ/(2~z) 1/2 as z ~ ~ (6.3) 

the variation of the free energy (6.1) with respect to 2~ r) then yields 
q~r)=0, in contradiction to our initial assumption q~T)= 1. The same 
happens if we assume 2(0 r), ) , ] r ) ~  OO. Thus, we must have 2(0 T), 2 ~ r ) ~ 0 1  
i.e., uo"(r)<--~ Ul'(T)< 1. Variation of the free energy (6.1) with respect to 2~ r) 
by using the relation (5.9) and 2(o r), 2]v)~ 0 gives 

q(o T) = q~r)= 0 (6.4) 



Quenched n-Vector p-Spin Model 403 

Just as in the replica-symmetric case, we find therefore that the system for 
large p can only occupy longitudinal low-temperature states after the first 
step of symmetry breaking. 

_(L) In order to have nontrivial symmetry breaking, we require q(0L)< q~ . 
Then 2(o L/, 2~c)~0 simply recovers the replica-symmetric case. Hence, we 
have q(o r~ < q~L)= 1. That is, the procedure for replica symmetry breaking 
from Section 4 terminates after the first step. This is analogous to the n = 1 
model considered by Gross and M6zard. (6~ 

The free energy (6.1) for the longitudinal solution (6.4) becomes 

~ = - i n  F ( ( n -  1)/2) 

with 

g(L) ( (Aj)2 } 
~ m 

2 ~ o  2 

- ( l - m )  ~ -  2~ L ) -  (A J)2 2 [q~L)jp-1 

- - ~ + ( n - 1 ) - - - ~  # ( n - (  )2 

1 Dxo in Dx~ F[n, p(L), ~(n, 2(oC), 2~c), Xo, x ~ ]  m 
m -co  oo 

(6.5) 

[l+ n 1 w(L)(d) -- -- , w(n(d) =- (6.6) 
11 

and the function 

Fin, ]A (L), ]A (T), •(L) ~ L )  Xo ' Xl ] 

=-- f l l d y ( 1 - -  y2)('-3)/2exp {Y~2 [#(L)--#(r~--)~L~ ] 

+ y(xo(,~L))l/2 + xl(:~IL~_; (j))1/2)} (6.7) 

2] L) and/~(L,r) are determined by the order parameter equations (4.21), 

2].c) P(AJ) 2 2 [q]L)]p-1 

(6.8) 
p(~J)2 #(L, n [w(L, r)(d )3 p- I  

2 

combined with our result above that 2(oL)~O and ~IL)~ oo. 
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This allows the triple integral in Eq. (6.1) to be expanded asymptoti- 
cally. First, we expand the free energy (6.1) for 2(0L)~ 0, 2]L)~ 0% and 

#(L) _ _  #(T) 
lim < 1 - m 

2~ L) ~ ~ 21 

Differentiating the result with respect to 2~ L), however, yields 
(1 - -m)  q]L)/2~O, in contradiction to our initial input q~= l .  Thus, we 
have 

#(L) _ _  /](T) 
lim - -  > (1 - m) (6.9) 

This is consistent with our physical expectation that the self-correlation 
w (L) of a pure state should be at least as big as the largest overlap between 
two pure states given by q~L) = 1, i.e., ~t (L) - #(r) ~> ,L~L). Expanding the free 
energy (6.1) for 2~OL)~ 0, 2~ L)~ 0% and the condition (6.9) gives 

~ 2 In 2re - lm In 2 - m - T  2(~ - (A J)22 [q(oL)]p 1 

2]L) q]L,{ (dj)2 } 
+ ( 1 - m ) - - ~ - - - ( 1 - m ) - - ~ -  ALL)-- 2 [q]L)]P-t 

W. w(L)(d){ ;)2 } 
_ _ 5 - + - - 5 ~  WL)_(~ [w(L)(d)3~ , 

w(dU ) f (~)- (,ad) ~ } + ( n - 1 ) ~ , [ #  2 [w(r)(d)]p t 

n - I  +--~--In [U(L) #(r)_ (l _m) 2]~)] 

{ ' } 4- O [2(oL)] 2,/~(L)__/z(T ) -(1 - m )  ,L~ L) (6.10) 

For n = 1, this free energy agrees with the Gross and M6zard result. (6) 
Differentiating the free energy with respect to q~o L), q~L), and d simply 

recovers Eq. (6.8). Differentiating with respect to 2(o t), 2] L), #(L), and /~(r) 
gives 

q~o L) = O, q~L) ..~ 1, 

consistent with our initial assumptions. 

d =  1 (6.11) 
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Finally, the variation with respect to m yields 

rn2(AJ) 2 = 4 In 2 + 2(n - 1)m (6.12) 

where we have used Eqs. (6.11), (6.6), and (6.8). Since 0~<m~<l, this 
means that solutions exist only if 

AJ >>. AJg =- [4 In 2 + 2(n - 1 ) ] 1/2 (6.13) 

The spin-glass transition temperature Tg=AY/ (kAJg)  agrees with the 
Gross and M6zard result for n = 1 and decreases as n increases. 

In contrast to the n = l  model, however, Tg for n > l  does not 
represent the temperature where the entropy of the high-temperature solu- 
tion turns negative, as we explained in Section 5 in conjunction with 
Eqs. (5.18)-(5.19). 

The (unsymmetrized) probability distributions (4.12) for the overlaps 
and self-correlations of the pure states of the system are obtained as 

~ m 6 ( q ~ ) + ( 1 - m ) b ( q ~ - l )  e = f l = l  
P ~ ( q ~ )  = (6 (q~)  else 

where m represents the solution of Eq. (6.12), noting that 0 ~<m ~< 1: 

(6.14) 

n -  1 + [ ( n -  1) 2+ (A J) 2 4In 2] 1/2 
m ~ (A j )  2 (6.15) 

The free energy is evaluated by inserting m together with Eq. (6.11) 
into (6.10). We find 

k-T ~ X 4- + T I n  X + - ~  m 4--~ t O  (6.16) 

with 

X = (n - 1) + [(n - 1)2 + (A j)2 4 In 2] 1/2 (6.17) 

For  n > 1, we see that the free energy diverges as p --* ~ .  This is a 
result of the fact that for n > 1, and due to our spin normalization ]ISI] = 1, 
individual spin components S~ are ~<1. Each interaction term in the 
Hamiltonian (1.1) therefore consists of the product of p spin variables of 
magnitude ~< 1 and becomes itself of order e p with 0 ~< e ~< 1. This results in 
a scaling of the free energy with p if the spin variables are on average 
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unequal to one or zero in magnitude, i.e., if (8 )  #0 ,  1. For n = 1, this kind 
of scaling is not observed, since e is always equal to one. 

Unfortunately, the explicit form of scaling is difficult to establish 
ahead of the actual calculation. Equation (6.16) shows that for the spin- 
glass phase it is of order �89 - 1) in p in the free energy. This is certainly 
different from the scaling of the high-temperature free energy given in 
Eq. (5.18). However, it is precisely the scaling we find for the low-tem- 
perature solution of the annealed n-vector p-spin model. The free energy for 
the latter, in the limit p --* oe and by taking the normalization IIS11 = 1 into 
account, is given by (1) 

{~ (A J)2 In 2~"/2 
/ / a ' ~  4n ---T- i F(n/2~)' T>Tc 

..... led --ln 27g (n- 1)/2 (A J) 2 n-1  (1) 
4 ~ - - - ~ l n  p + O , T<Tc 

(6.18) 

Because of Eqs. (2.3) and (2.8) for the quenched model and the 
corresponding equations for the annealed model, it is always possible to 
obtain a finite low-temperature free energy per spin by performing the 
following scaling transformation: 

AJ AJo IISll = p(n- 1)/2 (6.19) pp(n 1)/2' 

as p ~ ~ .  We assume AJ o to be an intensive quantity. This scaling trans- 
formation simply adds a constant - �89 - 1 ) In p to the free energy, which 
therefore cancels the divergent term in both the quenched and annealed 
low-temperature solutions. However, the same scaling transformation 
which makes the low-temperature free energies per spin finite makes the 
high-temperature free energies diverge. In other words, for n > 1 there is 
not a universal scaling which could be introduced right from the start into 
the formalism and which would keep both the high- and low-temperature 
free energies per spin simultaneously finite as p ~ m. In this sense, an 
anomalous feature emerges from the model (1.1) with respect to scaling at 
p = ~ .  

We also note that the low-temperature free energy (6.16) is larger than 
the high-temperature free energy (5.18) for all finite temperatures T <  Tg. 
This is a consequence of the fact that in the replica formalism the free 
energy has to be maximized in order to find the equilibrium configuration 
of the system. This is in contrast to ordinary statistical mechanics (cf. the 
annealed case) and represents a feature of all spin-glass models, even when 
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evaluated by some alternative method (cf. the n = 1 model considered as 
the random energy model(4'5)). 

Finally, we see that the free energy has a jump discontinuity at the 
spin-glass transition temperature Tg. This indicates a first-order transition 
with latent heat. It is in contrast to the spin-glass transition for the n = 1 
model as p ~ ~ ,  which is only of second order with no latent heat. (6'7) 
Furthermore, the free energy (6.16) displays a temperature dependence for 
n > 1, while the corresponding free energy for the n = 1 model is constant 
at all T < T g .  The latter is a consequence of the n =  1 model being 
equivalent to the random energy model where below Tg only one low-tem- 
perature state exists. It also makes it seem unlikely that our model for n > 1 
and p ---, oo could be solved by an alternative method similar to the random 
energy model. 

6.2. S t a b i l i t y  o f  the  L o w - T e m p e r a t u r e  So lu t ion  as p ~ oo 

We now investigate whether the free energy given by Eqs. (2.6) and 
(2.8) is stationary with respect to fluctuations of the order parameters 
q~,p~ about the equilibrium configuration just determined by the first step 
of replica symmetry breaking. For  large p, and by following the same 
arguments as in Section 5.4, it suffices to insert the longitudinal ansatz 
(5.23) into (2.8) and to consider fluctuations of the longitudinal parameters 
q(~) about their equilibrium configuration q(o L), q~L). Again, the auxiliary 
parameters 2~;p~ are linked to the physical parameters q~B;p~ by Eq. (2.10). 

If we express all a (L)_, p~ in terms of 2(0~ ) by means of Eq. (2.10), then the 
free energy (2.8) will be stable if the Hessian 2 (L) (L) -~  G/82p~ 82~ is positive- 
definite. Let us first consider a diagonal element of the Hessian with p, r in 
different clusters: 

82G q(o L) 
finite expression (6.20) 

( p -  1) 

Since we have p > 2 and q(oL)= 0, the first term diverges. That is, all 
diagonal elements of the Hessian with p, z in different clusters are positive 
and infinite. All off-diagonal elements of the Hessian, on the other hand, 
are finite. This means that if we have an eigenvector of the Hessian which 
has a nonzero component xp~ with p, z in different clusters, then the 
corresponding eigenvalue must be positive and infinite. 

It remains to consider eigenvectors of the Hessian which have only 
nonzero components xp~ with p, z in the same cluster. This reduces the 
eigenvalue problem for the entire Hessian to an eigenvalue problem for the 
Hessian submatrix of a cluster, -82G/82~ ~ 82~, with p, ~, ~, v in the same 
cluster. Because of the symmetry of the solution within a cluster, the eigen- 

822/71/3-4-4 
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value problem has then become analogous to the replica-symmetric case. 
Thus, the condition for stability of the free energy (2.8) after the first step 
of symmetry breaking and for large p is given by EV> O, where EV has 
been defined in (5.24) and where it is now understood that p, 3, a, v are all 
in the same cluster. 

In order to evaluate EV, we require the following expectation values 
for spin components within the same cluster: 

<pa I .ca1 ) = q]L) 

=[+j  DxoI~-oo Dxl [I 1 1 dy yoIL)] 2 [~1_ l dyQ]L)] m-2 
-+ I++ Dx 1 [f1_1 dy 0~L)] m 

( pS1 ~$1 pSI~S1)  

f 
oo --oo = Dx~ j~176 Dx' [II_ldyy2oIL)]2 [I*_ldyOIL)] "~-2 
--oo IT+ Dx' [IL, dy O~L)] " (6.21) 

(pS 1 ~S 1 pS x ~S 1 ) 

f+ 5~ DX 1 J i l l  dy y20~L)l [I1_1 dy yo~C)] 2 [I'-, dy O~L)] '' 3 
= Dx o J --oo ~ +  Dxl [ ILl dy o~L)] ~ 

( p s  1 vS 1 r vS1 ~ 

=/+  nxo~_ooDx~ [i[i dy yoIL)]4 [iL( dy o~L)]. 4 
-+ I~_oo Dx 1 [~L, dy O~L)] m 

where it is understood that p r ~ r a # v and where we have defined 

O]L)--(1--y2) (n 3)/2 exp {-~ [/.z(L) -- ~(r) -- ):]L)] 

~,[~. / ~ ( L ) ] l / 2  ..t_ ~- [](L) __ ,] ( L ) ] l / 2 ] ~  
-[- Y~'a'O\'~0 ! - -  ~ 1 \  *~ 1 "~0 . ] ] ~  

From Eqs. (2,6), (5.24), and (6.21), EV becomes 

q]L) foo Dxo EV-  (p-1),q~) 

~176 I I I - - l f f Y _ _ Y 2 ~ L ) | J - - l [ - [ ' l  all2 " ~ o ( L ) ~ 2 " I 2 [ I  ; 2 '  .)' 1 , ( 

f o o D X l (  I I _ l dJO~  L, LEj;~(--~jj , 

x 

(6.22) 

dy O]L)] " 
(6.23) 
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We showed above that for large p we have 2(0L>~0 and 2~L)~ oo. 
Equation (6.11) tells us further that for large p we have 

z - #(L> __ p(r) _ 2~L) ~ 0 (6.24) 

This enables us to expand the various integrals in Eq. (6.23) asymptotically 
for large values of p. This has to be done up to third order to obtain the 
first nonvanishing contribution to EV. We find 

- -1  

~ X [ 1 -  ( n -  1)(n-- 3) + ( n + l ) ( n - - 1 ) ( n - 3 ) ( n - -  5) 7 8[;+-Txliiiv/,7, ] + 

f l  dy yo~ L> 
--1 

(n - 1 )(n + 1 ) 
~ x  1 - 8 [ z +  Ixll(J.~>) '/2] + 

where 

fl dy y20]L> 
- - 1  

(n+ 1)(n- 1)(n2- 9) + ...] 
(6.25) 

(n-- 1)(n+5) 
~X 1--8[z+ lXxl(~L>)l/2]+ 

(n+  1 ) ( n -  1)(n 2+ 8 n -  1) 
27[z + Ixal(R~L))1/23= + ] 

2 (n 3)/2F((n- 1)/2) exp[z/2 + ]xll(R~L)) 1/2] 
X =  [ z +  ]xli(2]L>)I/2] (n 1)/2 (6.26) 

By inserting the expansions (6.25) into Eq. (6.23), and using m from 
Eq. (6.15) and 2]L)~ p(Aj)2/2, we find that the stability condition EV> 0 
for the first step of replica symmetry breaking as p --* oo becomes 

~ / 5 ( n  - 1) ~ J  
1 > p { n -  1 + [ ( n -  1) 2+ (A J) 241n 2]v2} 2 (6.27) 

This condition is satisfied for all AJ. That is, the longitudinal solution 
(6.11) with one step of replica symmetry breaking is stable at all tem- 
peratures T < Tg for large p. 

7. D ISCUSSION 

The quenched model (1.1) has been investigated for the case of general 
n while p --, oo. For p > 2, the model incorporates an anisotropy of type S,  



410 Taucher and Frankel 

which replaces the O(n) symmetry of the model for p = 2 in the absence of 
a magnetic field. 

In the case of Ising spin systems, the replica formalism generates an 
order parameter matrix ~ = (Qp~), where each Qp~ is a number. For n > 1, 
the replica formalism generates an order parameter matrix ~ = (Qp,)= 
(q~a;pc), where each element Qpc is an n x n matrix. Interactions with p > 2 
are incorporated into the replica formalism by means of n x n Lagrange 
multiplier matrices Ape = (2~;o~). 

The solutions Qp~ have a geometrical degeneracy of type O(n) for 
p = 2 and of type Sn for p > 2. The most general matrix .~ can be expressed 
as ~ = TROT, where ~ - ( 0 p ~ )  represents the standard form (4.6)-(4.7) of 
the matrix ~ and where T is of the block-diagonal form (4.9). This 
geometrical degeneracy is independent of the bonds and randomness and 
corresponds to the time-reversal symmetry of the n = 1 model. For p = 2 
and q(r) = 0, the concomitant shape of the probability distributions for the 
overlaps and self-correlations of the pure states is given by the correspond- 
ing distributions for the nonrandom model. It can be expressed in terms of 
associated Legendre functions of the second kind. 

The standard matrices ~)p~ given by Eqs. (4.6)-(4.7) are determined by 
three parameters. The off-diagonal matrices ~p~ (p e z) depend on the 

a (r) while the longitudinal parameter -1 ~ and the transverse parameter .,;~, 
matrices Qpo depend only on the self-correlation (quadrupolar) parameter 
dp. For n > 1, the model is therefore described by three order parameters, 
q(L) a(r) and d o p c  ' ' T p c  , 

The physical interpretation of the replica formalism shows that the off- 
diagonal matrices Qp~ (p • z) (and hence the parameters (L T) q;~' ) describe 
the overlap (3.2) between the pure states of the system in analogy to the 
n = 1 model. The matrices Qp; (and hence the parameters dp), on the other 
hand, describe the "self-correlation" (3.3) for the pure states of the system. 
The probability distributions P ~  for the overlaps between the pure states 
and the probability distributions W~ for the self-correlations of the pure 
states constitute the physical order parameters for the system. They are 
given in terms of the parameters a (Lv) and d; from the replica formalism -1 p ' r  

in Eq. (4.12). 
It is also possible to give "averaged" definitions (3.4)-(3.5) for the 

overlap and self-correlation of pure states which eliminate the need for an 
order parameter for self-correlation. Within our replica formalism, this 
corresponds to describing the space of pure states by the traces of the 
matrices Qp~ rather than by the matrices themselves. Since Tr Qpp = 1, dp 
becomes invisible. Such a description would represents a mean-field theory 
for the model. 

In addition to the concept of replica symmetry, we have introduced 
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the notion of "component symetry" for the matrices Qp~. At high tem- 
peratures both replica and component symmetry must be conserved. The 
only possible solution is given by Eq. (4.13). At low temperatures, compo- 
nent symmetry must be broken. In the limit of large p, we find that only 
longitudinal low-temperature solutions ~(T) (qer = 0) are possible, both when 
replica symmetry is conserved and when it is broken. This is in constrast 
to p = 2 (see Introduction), where in the presence of a magnetic field or 
some anisotropic interaction longitudinal, transverse (q(~)= 0), and mixed 
spin-glass states ,~p~'(L~, Llp~-(r)r 0) are possible. 

Even though replica-symmetric low-temperature solutions exist, our 
physical interpretation of the formalism tells us that replica symmetry 
must be broken at low temperatures. Replica symmetry for the overlap 
parameters q(o L' r) is broken according to the Parisi scheme just as for n = 1, 
while we find that replica symmetry must be conserved for the self-correla- 
tion parameters dp, i.e., dp = d for all p. This can be shown by means of the 
H61der inequality and is a consequence of the way in which the Parisi 
scheme breaks replica symmetry for the off-diagonal parameters a (L'r) It ~ p T  

does not necessarily hold for other schemes of symmetry breaking (in 
particular, if the ultrametric structure is missing). As p ~ o% the procedure 
for symmetry breaking terminates after the first step. This is analogous to 
the Gross and M6zard result for the Ising case. (6) 

The high-temperature solution is given by Eq. (4.13), and the corre- 
sponding free energy and entropy by Eqs. (5.18)-(5.19). In contrast to the 
Ising case, the temperature where the entropy becomes negative has no 
physical meaning. It is simply a consequence of how many states we count 
on the unit sphere and can be shifted by adopting a different convention for 
the spin density dS. While the counting procedure is uniquely determined 
for discrete Ising spin systems, this is not the case for continuous spin 
systems. For large p, the high-temperature solution is stable at all tem- 
peratures down to T =  0. Again, this is analogous to the n = 1 case, (7) but 
is in contrast to the p =  2 model, where the high-temperature solution 
becomes unstable at the AT (n = 1) or the GT (n > I) line. 

The transition to a low-temperature phase which we expect on physi- 
cal grounds is not determined by instability or an unsatisfactory negative 
entropy. Only longitudinal (q(V)=0) low-temperature solutions are 
possible for large p. We find that any transition to a low-temperature phase 
must be accompanied by a jump in both the longitudinal parameter a (r) -1 p ~  

and the self-correlation parameter d for large p. 
As p ~ ~ ,  the system settles into the spin-glass phase (6.11) (SG1) for 

all T <  Tg. The spin-glass transition temperature Tg is given by Eq. (6.13), 
the corresponding free energy by Eq. (6.16). For n > 1, the transition is of 
first order with a latent heat and a jump discontinuity in the order 
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parameters q~L) and d. This is in contrast to the spin-glass transition for the 
n =  1 model, which is only of second order. ~6'7) The spin-glass solution 
is stable at all temperatures T <  Tg. Since our stability analysis holds 
asymptotically for large values of p, the spin-glass phase SG1 will also be 
stable for large but finite p. This is despite the fact that for all finite p we 
expect at least one additional spin-glass phase for which replica symmetry 
is broken an infinite number of times (SG2). Thus, we have a similar situa- 
tion as for the high-temperature solution. The transition to SG2 for large 
but finite p is not characterized by instability, but rather by a crossover 
line from weak to strong replica symmetry breaking. This is analogous 
to the crossover line from weak to strong symmetry breaking in the 
p = 2 model. ~14 iv) However, it is in contrast to the n = 1 model for large 
but finite p, where the transition from SG1 to SG2 is determined by 
instability. (7) 

The free energy for the spin-glass phase scales as �89 - 1 ) In p for large 
p. This results from the fact that each interaction term in the Hamiltonian 
(1.1) consists of the product of p spin variables of magnitude ~<1 and 
becomes itself of order e p with 0 ~< e ~< 1. If the spin variables are on average 
unequal to one o r  zero in magnitude, i.e., if ( e ) r  1, this leads to a scal- 
ing of the free energy with p. It is explained in detail following Eq. (6.17). 
By performing the scaling transformation (6.19), the p dependence can be 
removed from the low-temperature free energy. However, there is no 
universal scaling which would keep the both the high- and low-temperature 
free energies per spin simultaneously finite as p -~  oe. In this sense, the 
model (1.1) has an anomalous behavior with respect to scaling at p = oe. 

Finally, the spin-glass free energy (6.16) displays a temperature 
dependence for n > 1, while the corresponding free energy for the n =  1 
model is constant at all T <  Tg. The latter is a consequence of the n = 1 
model being equivalent to the random energy model, where below Tg only 
one low-temperature state exists. As commented upon in Section 6, it 
therefore seems that our model for n > 1 and p ~ oo could not be solved 
by an alternative method similar to the random energy model. 
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